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Logarithmic relaxation in glass-forming systems

W. Götze and M. Sperl
Physik Department, Technische Universita¨t München, D-85747 Garching, Germany

~Received 27 March 2002; published 29 July 2002!

Within the mode-coupling theory for ideal glass transitions, an analysis of the correlation functions of
glass-forming systems for states near higher-order glass-transition singularities is presented. It is shown that the
solutions of the equations of motion can be asymptotically expanded in polynomials of the logarithm of time
t. In leading order, a ln(t) law is obtained, and the leading corrections are given by a fourth-order polynomial.
The correlators interpolate between three scenarios. First, there are surfaces in parameter space where the
dominant corrections to the ln(t) law vanish, so that the logarithmic decay governs the structural relaxation
process. Second, the dynamics due to the higher-order singularity can describe the initial and intermediate part
of the a process thereby reducing the range of validity of von Schweidler’s law and leading to stronga
relaxation stretching. Third, the ln(t) law can replace the critical decay law of theb process, leading to a
particularly large crossover interval between the end of the transient and the beginning of thea process. This
may lead to susceptibility spectra below the band of microscopic excitations exhibiting two peaks. Typical
results of the theory are demonstrated for models dealing with one and two correlation functions.

DOI: 10.1103/PhysRevE.66.011405 PACS number~s!: 82.70.Dd, 61.20.Lc, 64.70.Pf
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I. INTRODUCTION

Within the mode-coupling theory~MCT! for ideal glass
transitions, the dynamics of an amorphous system of stron
interacting spherical particles is described byM functions of
time t, fq(t), q51,2, . . . ,M . These are autocorrelatio
functions of density fluctuations with wave-vector modulusq
chosen from a grid ofM values. The theory is based on
closed set of coupled nonlinear equations of motion for
fq(t). The coupling coefficients in these equations are giv
in terms of the equilibrium structure functions. The latter a
assumed to be known smooth functions of the control par
eters of the system like, e.g., the packing fractionw @1#. The
MCT equations exhibit fold bifurcations@2# at certain critical
values of the control parameters, say atw5wc , describing a
transition from ergodic liquid dynamics forw,wc to noner-
godic glass dynamics forw>wc . The transition is accompa
nied by the evolution of a slow stretched dynamics that w
suggested as the explanation of structural relaxation
served in glass-forming liquids. The leading-ord
asymptotic solutions of the equations for parameters
proaching the transition provide predictions for the univer
properties of glassy dynamics@3#. These predictions hav
been tested extensively against experimental data
molecular-dynamics simulation results@4,5#. The outcome of
these tests qualifies MCT as a candidate for a theory of st
tural relaxation in glass-forming systems.

It was shown that schematic MCT models exhibit a
higher-order bifurcation singularities like the cusp and sw
lowtail bifurcations. The accompanying dynamics is utte
different from that for the fold bifurcation. For example,
certain parameter regions, the leading order result re
@f(t)2 f #}2 ln(t/t) @6#. This logarithmic decay is equiva
lent to a susceptibility spectrum that is independent of f
quencyv, x9(v)}v0, or to a 1/f -noise fluctuation spec
trum. There are corrections to this leading-order result wh
alter qualitatively the straightf(t) versus logt lines or the
plateaus of thex9(v) versus log(v) plots. One needs to un
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derstand these corrections if one intends to get an overv
of the relaxation scenarios for parameters near the hig
order bifurcation points. It is the goal of this paper to provi
such understanding by construction of a general theory
the logarithmic relaxation law and its leading corrections

For parameters at a cusp singularity of schematicM51
models, the leading-order long-time decay follows the l
@f(t)2 f #}1/ln2t. This law has been embedded in a leadin
order description of the dynamics near the singularities
terms of multiparameter scaling laws@7#. It was shown by
Sjögren that dielectric-loss spectra for certain polyme
could be interpreted by this scaling-law description@8#, and
further work extended his analysis@9–11#. However, it was
also demonstrated that the cited decay laws at the crit
points have to be complemented by their leading correcti
in order to describe the numerical solutions of MCT equ
tions within a time regime relevant for data analysis@7,12#.
But, so far it has not been possible to evaluate the correct
for the mentioned scaling laws. The results of this paper w
be obtained along a different route of asymptotic expans
of the MCT solutions than that followed in Ref.@7#.

Logarithmic decay of correlations for glassy systems h
been observed, for example, in Monte Carlo simulation
sults for a spin-glass model@13#, for photon-correlation data
from a dense colloidal suspension@14#, and for optical Kerr-
effect data for a van der Waals liquid@15#. But the present
work is motivated by three recent discoveries. First, den
correlatorsfq(t) measured by photon-correlation spectro
copy for colloids of micellar particles demonstrated logari
mic decay within time windows of two orders of magnitud
in size@16#. Second, the MCT equations for a system who
structure was described by Baxter’s model for sticky ha
spheres exhibit cusp bifurcations@17,18#. These findings
have been corroborated by a comprehensive analysis o
glass transitions of a square-well system@19#. Third, loga-
rithmic decay extending over three decades in time w
found in a molecular-dynamics simulation for a system w
©2002 The American Physical Society05-1
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an interaction given by a strong repulsion complemented
a short-ranged attraction@20#. One concludes that highe
order bifurcation singularities are not restricted to schem
models and that there are reasons to suggest the searc
such singularities in colloids with short-ranged attraction
is the aim of this paper to provide a detailed discussion of
qualitative features that are characteristic of the relaxatio
systems near higher-order bifurcations. A set of general
mulas will be derived which could be used as a basis fo
quantitative analysis of future experiments and simulat
studies.

The paper is organized as follows. In Sec. II A, the kno
general MCT equations for structural relaxation are form
lated. Then~Sec. II B! these equations are rewritten in a for
that is suited as a basis for an asymptotic solution near
furcation singularities. Section III presents the theory for
logarithmic relaxation for MCT models dealing with a sing
correlator and in Sec. IV quantitative results are discus
for a cusp singularity in anM51 model. Section V present
the theory for the general case and in Sec. VI further res
are discussed for relaxation near a swallowtail singularity
an M52 model. Section VII summarizes the findings.

II. BASIC EQUATIONS

A. The equations for structural relaxation

MCT is based on two sets of equations. The first o
consists of the exact equations of motion for theM density
correlators fq(t),q51,2, . . . ,M , derived within the
Zwanzig-Mori formalism

] t
2fq~ t !1Vq

2fq~ t !1E
0

t

Mq~ t2t8!] t8fq~ t8!dt850.

~1a!

The initial conditions readfq(t50)51,] tfq(t50)50. The
positive Vq are characteristic frequencies and the kern
Mq(t) are fluctuating-force correlators@21#. In colloidal sus-
pensions, there are contributions to the force due to inte
tions of a colloid particle with the solvent particles. The
fluctuate on a time scale much shorter than the one rele
for the motion of the mesoscopic colloid particles. Therefo
one can approximate the corresponding contributions to
kernel by a white-noise term, and this leads to a friction fo
nq] tfq(t),nq.0. Compared to this term, one can neglect
inertia term] t

2fq(t). One arrives at the analog of Eq.~1a!
for colloids, i.e., at an equation of motion where the und
lying dynamics is Brownian rather than Newtonian:

nq] tfq~ t !1Vq
2fq~ t !1E

0

t

Mq~ t2t8!] t8fq~ t8!dt850.

~1b!

The initial conditions arefq(t50)51. The kernels are spli
into regular ones,Mq

reg(t), and so-called mode-coupling ke
nels mq(t) describing the cage effect:Mq(t)5Mq

reg(t)
1Vq

2mq(t). The regular terms describe normal liquid effec
like binary collisions in conventional liquids or hydrody
namic interactions in colloids. The crucial step in the deriv
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tion of MCT is the application of Kawasaki’s factorizatio
approximation in order to expressmq(t) as functionalsFq of
the M correlatorsfk(t) called mode-coupling functionals
For simple systems, they are quadratic polynomials, wh
coefficients are given in terms of the equilibrium structu
functions@1,22#. The functionals depend smoothly on, say,N
control parameters to be combined into a control param
vector V5(V1 , . . . ,VN). In conventional liquids, the pack
ing fraction and the temperature may be the control para
eters. In colloids, one of the control parameters may be
attraction strength, which can be changed by modifying
solvent. Let us denote the functionals byFq@V, f̃ k#. For 0
<u f̃ ku<1,k51,2, . . . ,M , they can be written as Taylor serie
with non-negative coefficients. Thus, the second set of M
equations is

mq~ t !5Fq@V,fk~ t !#. ~2!

Specifying the functionalsFq , the regular kernelsMq
reg(t),

and the frequenciesVq or nq , Eq. ~1a! or Eq. ~1b! together
with Eq. ~2! are closed. In the present paper, a topologica
stable singularity of Eqs.~1! and~2! will be discussed in full
generality. Therefore, microscopic details are not of conce

It will be convenient to discuss dynamics in the domain
complex frequenciesz,Im z.0. This can be achieved b
Laplace transformation of functions of time, sayF(t), to
functions of z denoted byL@F(t)#(z)5 i *0

`exp(izt)F(t)dt.
Equations~1a! and~2! together with the initial conditions are
equivalent to a fraction representation offq(z)5L@fq(t)#
3(z) in terms of Mq

reg(z)5L@Mq
reg(t)#(z) and mq(z)

5L@mq(t)#(z),

fq~z!521/$z2Vq
2/@z1Mq

reg~z!1Vq
2mq~z!#%. ~3a!

The analog for the colloid dynamics is derived from E
~1b!:

fq~z!521/$z2Vq
2/@ inq1Mq

reg~z!1Vq
2mq~z!#%.

~3b!

There are two possibilities for the solutions of the preced
equations. First, all long-time limits of the correlators m
vanish as expected for an ergodic system. States with s
control parametersV are referred to as liquids. Second, the
may be nonvanishing long-time limitsf q5fq(t→`),0, f q
<1, as expected for nonergodic systems. States with s
control parametersV are referred to as glasses, andf q is
called the glass form factor. ChangingV, it may happen that
there are valuesVc where one changes from a liquid to
glass—these are the ideal liquid-glass transitions discus
within MCT @1#. For glass states,fq(z) exhibits a zero-
frequency polefq(z→0);2 f q /z. Because of Eq.~2!,
a similar statement holds for the kernel,mq(z→0)
;2Fq@V, f k#/z. Hence, for frequencies tending to zero, t
kernelmq(z) becomes arbitrarily large compared to the te
z1Mq

reg(z) or the terminq1Mq
reg(z), respectively. Because

of continuity, for states with control parameters near the o
for glass statesVq

2mq(z) is also very large compared toz
5-2
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LOGARITHMIC RELAXATION IN GLASS-FORMING SYSTEMS PHYSICAL REVIEW E66, 011405 ~2002!
1Mq
reg(z) or to inq1Mq

reg(z). Under the specified condi
tions, Eqs.~3a! and ~3b! simplify to @3#

fq~z!521/@z21/mq~z!#. ~4!

This equation exhibits most clearly the fraction represen
tion of correlators, which is the essence of the Zwanzig-M
theory. It shows that there is a one-to-one corresponde
between density fluctuations and force fluctuations. Ther
no separation between the time scales for the particle mo
within cages and for the particles forming the cage. The
fore, the correlatorsfq(t) and the kernelsmq(t) have to be
calculated self-consistently—this is the essence of M
Equation ~4! is scale invariant. With fq(t), fq

x(t)
5fq(x•t) is also a solution for anyx.0. The scale for the
high-frequency dynamics is determined by the transient m
tion and this is governed byMq

reg(t) andVq or nq . But these
quantities do not occur anywhere in Eq.~4!. Thus, Eq.~4!
can fix the solution only up to some time scale.

Equations~2! and~4! are the MCT equations for structura
relaxation. In particular, they are the basis of the asympt
expansions for the long-time dynamics for control para
eters near bifurcation points.

B. The equations for structural relaxation near glass-transition
singularities

In this section, the concept of a glass-transition singula
will be reviewed. The equations of motion will be rewritte
in a form where the small quantities that characterize
relaxation near such a singularity appear transparently.

To simplify the notation of the following equations, th
Laplace transform will be modified by a factor of (2z):

S @F~ t !#~z!5~2 iz!E
0

`

exp~ izt!F~ t !dt. ~5!

This linear mapping of functions of time to functions of fr
quency leaves constants invariant:F(t)5c implies S @c#(z)
5c. Let F(t)5^X* (t)X&/(kBT) denote a correlation func
tion for variableX determined for temperatureT. Then, the
dynamical susceptibility for frequencyv can be written as
x(v)5F(t50)2S @F(t)#(v1 i0) @21#. Thus, S @F(t)#(z)
denotes the nontrivial part of a dynamical susceptibility.

Equation~4! can be rewritten as

S @fq~ t !#~z!/$12S @fq~ t !#~z!%5S @Fq@V,fk~ t !##~z!.
~6!

The equationfq(t→`)5 f q is equivalent toS @fq(t)#(z
→0)5 f q . Similarly, one obtainsS †Fq@V,fk(t)#‡(z→0)
5Fq@V, f k#. The z→0 limit of Eq. ~6! yields a set ofM
implicit equations for theM glass form factorsf q @1#:

f q /~12 f q!5Fq@V, f k#. ~7!

This equation may have other solutions, sayf̃ q . The glass
form factor is distinguished by the maximum theorem:f̃ q
< f q ,q51, . . . ,M @22#.
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Let Vc denote some reference state. The long-time lim
of the correlators for this state shall be denoted byf q

c . The

correlators will be written in terms of new functionsf̂q(t):

fq~ t !5 f q
c1~12 f q

c!f̂q~ t !. ~8!

The functionalFq@V,fk(t)# can be rewritten as a Taylo
series inf̂k(t), using the coefficients

Aqk1•••kn

(n) ~V!5
1

n!
~12 f q

c!$]nFq@V, f k
c#/] f k1

c
•••] f kn

c %

3~12 f k1

c !•••~12 f kn

c !. ~9a!

These will be split into the values for the reference sta
Aqk1•••kn

(n)c 5Aqk1•••kn

(n) (Vc), and the remainders:

Aqk1•••kn

(n) ~V!5Aqk1•••kn

(n)c 1Âqk1•••kn

(n) ~V!. ~9b!

Let us consider a path in control-parameter space given
V(e)5„V1(e), . . .VN(e)…. The N components ofV(e) are
smooth functions of the path parametere, and the tangent
vector dV(e)/de must not vanish. Let us chooseV(e50)
5Vc, so thate can be considered as a distance param
specifying the neighborhood ofVc. One getsV(e)5Te
1O(e2), with T5dV(0)/de being the tangent vector of th
path atVc. The mode-coupling functional is a smooth fun
tion of V, i.e.,

Âqk1 . . . kn

(n) ~V!5O~e!. ~9c!

The details of thee dependence of the coefficients are n
important. The parametere is introduced mainly as a mean
for bookkeeping in the following expansions inV2Vc. Ex-
panding the left hand side of Eq.~6! in powers of
S @f̂q#(z), one can rewrite this equation in the form

@dqk2Aqk
(1)c#S @f̂k~ t !#~z!5Jq~z!, ~10a!

Jq~z!5Âq
(0)~V!1Âqk

(1)~V!S @f̂k~ t !#~z!

1 (
n52

`

$Aqk1•••kn

(n) ~V!S @f̂k1
~ t !•••f̂kn

~ t !#~z!

2S @f̂q~ t !#n~z!%. ~10b!

Here and in the following, summation over pairs of equ
labelsk is implied. These equations are equivalent to Eqs.~2!
and ~4! for the structural relaxation. The small quantities
be used for the asymptotic solution are the coefficie
Âqk1•••kn

(n) and the functionsf̂q(t) or S @f̂q(t)#(z), respec-

tively.
Specializing Eqs.~10! to the z→0 limit, one gets the

equation forf̂ q5f̂q(t→`):
5-3
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@dqk2Aqk
(1)c# f̂ k5Âq

(0)~V!1Âqk
(1)~V! f̂ k

1 (
n52

`

@Aqk1•••kn

(n) ~V! f̂ k1
••• f̂ kn

2 f̂ q
n#.

~11!

This is a rewriting of Eq.~7! so that small deviations off q

from f q
c andV from Vc are explicit. TheM3M matrix @dqk

2Aqk
(1)c# is the Jacobian of the set of implicit equations~7!

for the reference solutionf q
c at V5Vc. This Jacobian consist

of a unit matrixdqk and a matrixAqk
(1)c of positive elements.

The Frobenius theorems imply that, generically, this ma
has a nondegenerate maximum eigenvalueEc.0. All other
eigenvalues have a modulus smaller thanEc @23#. It is a
subtle property of MCT thatEc<1 @24#. If Ec,1, the
implicit-function theorem guarantees that all statesV for suf-
ficiently small e are states whose long-time limitsf q5 f q

c

1(12 f q
c) f̂ q depend smoothly one. In the following, the

reference stateVc will be specialized so that

Ec51. ~12!

In this case,Vc is a bifurcation point of Eq.~7!. The f q are
singular functions ofe for e→0, and thereforeVc is referred
to as a glass-transition singularity. SinceEc is non-
degenerate, the possible bifurcations are from the so-ca
cuspoid familyAl ,l 52,3, . . . . Thebifurcation singularityAl
is topologically equivalent to that for the zeros of a re
polynomial of degreel @2#. The A2, also called the fold bi-
furcation, is the generic singularity obtained by varying
single control parameter. The liquid-glass transition of MC
is of this type. In this paper, the dynamics near a higher-or
singularityAl ,l>3, will be analyzed.

III. RELAXATION DESCRIBED BY ONE-COMPONENT
MODELS

It will be shown in Sec. V that each iteration step of t
asymptotic solution of the equations of motion splits into tw
parts. First, one has to reduce the problem of calculatingM
correlators to the one of calculating the projection of t
correlators on the dangerous eigenvector of the above
fined Jacobian. Second, one has to solve the equation fo
projection. In this section, the second problem will be stu
ied, which is equivalent to a discussion ofM51 models.

A. Classification of glass-transition singularities

One-component models deal with a single correla
f(t), a single glass form factorf, etc. All matrix indices can
be dropped in the formulas of Sec. II. The 131 matrixAqk

(1)c

is identical with its maximum eigenvalueEc. Because of Eq.
~12!, the left-hand side of Eq.~11! vanishes. The equation fo
f̂ readse1(V)1e2(V) f̂ 1(n>2@Â(n)(V)2mn# f̂ n50, where
the following abbreviations are used:

mn512A(n)c, en~V!5Â(n21)~V!, n51,2, . . . .
~13!
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The singularity exhibited byf̂ for e tending to zero depend
on the number of successive vanishing coefficientsmn . A
singularity of indexl ,l>2, will be defined by

m15m25•••5m l 2150, m lÞ0. ~14!

The equation forf̂ reads

m l f̂
l5e l 21~V! f̂ l 221e l 22~V! f̂ l 231•••1e1~V!

1H e l~V! f̂ l 211e l 11~V! f̂ l1 (
n> l 11

@A(n)~V!21# f̂ nJ .

~15!

The implicit-function theorem can be used to show that th
is a smooth invertible transformation of thel variables
(e1 ,e2 , . . . ,e l 21 , f̂ ) which eliminates the curly brackets i
Eq. ~15!. Thus, the singularities described by this equat
are topologically equivalent to the ones described by the
line, i.e., by the zeros of a polynomial of degreel. In
Arnol’d’s terminology@2#, such a singularity is referred to a
Al . Because of Eq.~9c!, theen(V) are of ordere and will be
referred to as separation parameters.

The simplest glass-transition singularity is theA2. In this
case, there is only one relevant control parametere1(V). One
infers from Eq.~15! that there is a discontinuous change of̂
at the surface specified bye1(V)50. The bifurcation dynam-
ics is characterized by power-law decay and there app
power-law dependencies of the relaxation scales onue1(V)u.
All exponents in these laws are to be calculated froml51
2m2, which is called the exponent parameter@22#. The tran-
sition surface has a boundary that is determined byl51,
i.e., by m250. These end points are the higher-order sing
larities. TheA3 andA4 are also referred to as cusp and sw
low tail singularities, respectively.

B. Equations for an asymptotic solution

Let us specialize Eqs.~10a! and ~10b! for M51. Let us
also express the coefficientsA(n)(V) in terms of mn and
en(V):

05e1~V!1~12m2!S@f̂2~ t !#~z!2S@f̂~ t !#2~z!

1e2~V!S@f̂~ t !#~z!1~12m3!S@f̂3~ t !#~z!2S@f̂~ t !#3~z!

1e3~V!S@f̂2~ t !#~z!1~12m4!S@f̂4~ t !#~z!2S@f̂~ t !#4~z!

1•••. ~16!

This suggests an expansion of the solution in powers
ueu1/2. With G(n)(t)5O(ueun/2), let us write

f̂~ t !5G(1)~ t !1G(2)~ t !1G(3)~ t !1•••. ~17!

The first line of Eq.~16! is of order ueu and it provides a
nonlinear integral equation forG(1)(t). The contributions to
this line which are of orderueu3/2 together with the leading
terms of the second line provide a linear integral equation
G(2)(t), etc. This procedure will yield the desired asympto
5-4
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expansion provided the indicated integral equations de
meaningful solutions. This is indeed the case, as will be d
onstrated below by explicit construction of theG(n)(t). To
proceed, the following discussion will be restricted to high
order singularities by requiring

m250. ~18!

C. The leading contribution

The equation for the leading contribution to the correla
at a glass transitionAl with l>3 reads

e1~V!1S @G(1)2~ t !#~z!2S @G(1)~ t !#2~z!50. ~19!

The formulas for the Laplace transforms of the logarithm a
its square imply S @ ln(t)#(z)5ln(i/z)2g and S @ ln2(t)#(z)
5ln2(i/z)22gln(i/z)1g21(p2/6), whereg50.577 . . . is Eu-
ler’s constant@cf. the Appendix, Eq.~A1!#. Hence, Eq.~19!
is solved by2Bln(t) if e1(V)1(B2p2/6)50. Since the cor-
relators are monotonically decreasing functions oft @24#, one
must requireB.0. One concludes that a solution is given

G(1)~ t !52Bln~ t !, B5A@26e1~V!/p2#, ~20!

provided the control parametersV obey

e1~V!,0. ~21!

A more general solution isG̃(1)(t)5G(1)(t)1c, wherec can
be any real constant. Introducingx5exp(2c/B), one gets
G̃(1)(t)5G(1)(xt). Thus, the generalization is the one im
plied by the scale invariance of the basic Eq.~4!. It will not
be considered here. Rather, it will be accounted for at the
of all calculations by rescalingt to t/t. Ignoring corrections
of order ueu, one derives from Eqs.~8!, ~17!, and ~20! the
leading approximation for the correlator@6#:

f~ t !5 f c2~12 f c!B ln~ t/t!. ~22!

Let us anticipate that the smooth functione1(V) is ge-
neric for V nearVc and has a nonvanishing gradient. The
e1(V)50 defines a smooth surface throughVc in the
control-parameter space. It separates the neighborhood o
glass-transition singularityVc into a strong-coupling side
wheree1(V).0 and a weak-coupling side wheree1(V),0.
The results of this paper refer to the latter regime.

D. The leading correction

In order to solve Eq.~16! up to orderueu3/2, one has to
incorporate from the first line the contributio
2S @G(1)(t)G(2)(t)#(z)22S @G(1)#(z)S @G(2)(t)#(z), one
has to evaluate the second line withf̂ replaced byG(1)(t),
and one can ignore all other terms. Hence, the equation
the leading correctionG(2)(t) can be written in the form

T @G(2)~ t !#~z!5 f (2)~z!. ~23!

Here, the linear integral operatorT is defined by
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T @G~ t !#~z!5S @ ln~ t !G~ t !#~z!2S @ ln~ t !#~z!S @G~ t !#~z!,
~24!

and the inhomogeneity of Eq.~23! reads

f (2)~z!52 H e2~V!S @G(1)~ t !#~z!2m3S @G(1)3~ t !#~z!

12z$S @G(1)3~ t !#~z!2S @G(1)~ t !#3~z!%J /~2B!.

~25!

A factor of 2z has been introduced for later convenience. F
the study ofM51 models, one has to substitutez51/2.

The solution of Eq.~19! was built on the equations
T @c#(z)50,T @ lnt#(z)5p2/6. These formulas are generalize
in the Appendix by constructing polynomialspn(x) of de-
green>1 with the properties

pn~x!5bn,1x1bn,2x
21•••1bn,n21xn211xn, ~26a!

T @pn„ln~ t !…#~z!5n~p2/6!lnn21~ i /z!. ~26b!

These polynomials are a convenient tool to solve the eq
tion

T @g~ t !#~z!5 f ~z! ~27a!

for inhomogeneitiesf (z), which are polynomials in ln(i/z),

f ~z!5 (
n50

m

anlnn~ i /z!. ~27b!

Obviously,

g~ t !5 (
n51

m11

@an21 /~np2/6!#pn~ ln~ t !!. ~27c!

Using Eq.~20! and applying Eqs.~A1! and ~A2! for the
evaluation of the transformations of the powers of ln(t), one
can write f (2)(z) in the form of Eq.~27b! for m53. The
coefficients are linear functions ofe1(V) ande2(V):

a05@~6z/p2!~G32G1
3!2~3m3 /p2!G3#e1~V!

2~G1 /2!e2~V!, ~28a!

a15@3z2~9m3 /p2!G2#e1~V!2~1/2!e2~V!,
~28b!

a252~9m3 /p2!G1e1~V!, a352~3m3 /p2!e1~V!.
~28c!

Here, Gk5dkG(1)/dxk denotes thekth derivative of the
gamma function at unity. One concludes thatG(2)(t)5g(t),
where Eq.~27c! is to be used withm53:

G(2)~ t !5(
j 51

4

Bj ln
j~ t !. ~29a!

The coefficients are derived with Eqs.~A7a!–~A7c!:
5-5
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B15~0.444 25z20.065 381m3!e1~V!

20.222 13e2~V!, ~29b!

B25~0.911 89z10.068 713m3!e1~V!

20.151 98e2~V!, ~29c!

B3520.135 04m3e1~V!,

B4520.046 197m3e1~V!. ~29d!

Dropping corrections of orderueu3/2, the solution up to next-
to-leading order reads

f~ t !2 f c5~12 f c!@~2B1B1!ln~ t/t!1B2ln2~ t/t!

1B3ln3~ t/t!1B4ln4~ t/t!#. ~30!

A singularity Al with l>4 implies m350. In this case, the
formula simplifies becauseB35B450.

The described procedure can be continued. To solve
~16! up to ordere2, one derives the analog to Eq.~23!:
T @G(3)(t)#(z)5 f (3)(z). The functionf (3)(z) has the form of
Eq. ~27b! with m56, where the coefficientsaj depend on
the parameterse1(V),e2(V),e3(V),m3, andm4. As a result,
one gets

G(3)~ t !5(
j 51

7

Cj ln
j~ i /z!, ~31!

whereCj5O(ueu3/2).

IV. RESULTS FOR A ONE-COMPONENT MODEL

The simplest example for a generic cusp bifurcation
provided by anM51 model with the mode-coupling func
tional F @V, f̃ #5v1 f̃ 1v3 f̃ 3. This model was derived origi
nally within a microscopic theory of spin-glass transitio
@25#. It will be used here in order to demonstrate seve
implications of our theory. Let us use the model with
Brownian microscopic dynamics so that Eqs.~1b! and ~2!
specialize to

t1] tf~ t !1f~ t !1E
0

t

m~ t2t8!] t8f~ t8!dt850, ~32a!

m~ t !5v1f~ t !1v3f3~ t !. ~32b!

The two coupling constantsv1>0 andv3>0 are considered
as the components of the control-parameter vectorV
5(v1 ,v3).

Figure 1 reproduces the phase diagram@6,22#. It is ob-
tained from the largest of the solutions forf c of Eq. ~7!, i.e.,
v1

c f c1v3
c f c35 f c/(12 f c), and Eq. ~12!, i.e., v1

c13v3
c f c2

51/(12 f c)2, 0< f c<1. There are two transition lines. Th
first one is the straight horizontal line of degenerateA2 bi-
furcations:v1

c51, 0<v3
c<4, f c50. On crossing this line by

increasingv1 , f 5f(t→`) increases continuously. The se
ond one is the smooth curve ofA2 singularitiesV(2)c shown
01140
q.

s

l

as a heavy full line. It starts atv1
(2)c50,v3

(2)c527/4,f (2)c

52/3. With decreasingv3
(2)c , f (2)c decreases along the line

For v1
(2)c51,v3

(2)c54 one getsf (2)c51/2. Decreasingf (2)c

further, the line reaches the end point that is marked b
circle. This is theA3 singularityVc specified by

v1
c59/8, v3

c527/8, f c51/3, m351/3. ~33!

The two separation parameters are obtained from Eqs.~9b!
and ~13! as linear functions of the parameters differenc

v̂1,35v1,32v1,3
c :

e1~V!5~2/81!@9v̂11 v̂3#, e2~V!5~4/27!@3v̂11 v̂3#.
~34!

These formulas determine the coefficientB in Eq. ~20! and
B12B4 in Eqs.~29!. The scalest for the results in Eqs.~22!,
~30!, and ~31! are determined as the time where the c
relator crosses the critical form factor:f(t)5 f c.

The dominant deviation of the correlators from the log
rithmic decay law, Eq.~22!, is caused by the termB2ln2(t/t)
in Eq. ~30!. Thus, the logarithmic decay law is exhibited be
for statesV with B250. This line is shown dash-dotted i
Fig. 1. Figure 2 demonstrates the evolution of the dynam
upon shifting states on this line toward theA3 singularity.
The ln(t/t) interval, where Eq.~22! or ~30! describes the
correlators within an error margin of 5%, is marked b
closed or open symbols, respectively. Forn>2, these inter-
vals increase with decreasingV2Vc.

There are two peculiarities concerning the range of ap
cability of the asymptotic expansions. First, it can happ
that for sufficiently largee the range shrinks if one proceed
from the leading approximation to the next-to-leading one

FIG. 1. Phase diagram for the one-component model define
Sec. IV. The horizontal light full line marks the liquid-glass trans
tion curve connected by a continuous variation of the glass fo
factor. The heavy full line presents the set ofA2 singularities, which
ends at theA3 singularity marked by a circle. The dashed straig
line describes the points of vanishing separation parametere1 and
the dash-dotted one the points of vanishing coefficientsB2. Crosses
with labelsn and triangles with labelsn8 denote states discussed
Figs. 2–4 and Figs. 5 and 6, respectively.
5-6
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is demonstrated in Fig. 2 for then51,2 results. This is
caused by a cancellation of errors due to neglecting theB1
correction in the prefactor of the ln(t/t) term in Eq.~30! and
due to neglecting the terms proportional toB3 andB4. This
peculiarity would disappear if the tolerated error marg
were decreased sufficiently below the 5% used. Second
smallV2Vc, the interval of decay forf(t) below the critical
form factor f c that is described by the asymptotic expans
shrinks with decreasing separation. This is inferred by co
paring then53 with the n54 results. The reason is th
following. The correlator f(t) decreases monotonicall
toward its long-time limitf @24#. But the interval f c2 f 5

2 f̂ shrinks for e→0, since Eq. ~15! implies 2 f̂
5@2e1(V)/m3#1/3@11O(e1/3)#.

Figure 2 demonstrates that the transient regime extend
aboutt/t151. For vanishing mode-coupling functional, th
correlator describes a Debye process:f(t)5exp(2t/t1).
Mode-coupling effects cause a slower decay fort/t1>1. But
for V close toVc, the transient dynamics is rather insensiti
to changes of the coupling constants. There is a cross
interval, sayt1,t,t* , before the decay off(t) toward f c

can be described by the ln(t/t) law. The beginningt* of the
range of validity of Eq.~22! is indicated by the filled sym-
bols. There are two subtleties demonstrated forn>2. First,
the timet* increases upon approaching theA3 singularity,
and therefore the decay intervalf(t* )2 f c which is de-
scribed by the logarithmic law shrinks with decreasing se
ration parameters. The control-parameter sensitive struc
relaxation is governed by the two time scalest* andt. Both
times become large, butt/t* becomes large as well fore
→0. Second, the beginning of the range of applicability

FIG. 2. Correlatorsf(t) for the one-component model define
in Sec. IV. The states are located on the lineB250 with coupling
constants v1

c2v150.9298/4n, v3
c2v353.3750/4n, n51, . . . ,4,

marked by crosses in Fig. 1. The full lines are the solutions of E
~32a! and ~32b! with t151 as the unit of time, as also in the fo
lowing figures. The dotted straight lines exhibit the leading appro
mation, Eq.~22!, the dashed lines the leading correction, Eq.~30!.
The filled and open symbols, respectively, mark the times wh
these approximations deviate from the solution by 5%. The do
line marked byD is the Debye law exp@2t/t1#. The horizontal line
shows the critical form factorf c51/3.
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the leading correction Eq.~30! is control-parameter insens
tive, as is shown by the open symbols on the short-time p
of the decay curves.

The explanation of the findings in the preceding pa
graph is based on the fact that, for every fixed finite tim
interval, the MCT solutions are smooth functions of the co
trol parameters@24#. Therefore, fore tending to zero, the
correlator for stateV has to approach the correlator for sta
Vc, the so-called critical correlator. The latter is shown as
heavy full line with labelc in Fig. 3. Thus, for every time
interval 0<t<tmax and every error margin, there exists a
e* so thatf(t) agrees with the critical correlator within th
error margin for allueu,e* and all 0<t<tmax. This feature
is demonstrated in Fig. 3 by the two curves with labelsn
54 and e1:0. They refer to states withv12v1

c5

60.9298/44 andv32v3
c563.3750/44. These correlators are

very close to the critical one fort<tmax; tmax'325 is indi-
cated by open circles in Fig. 3. The critical correlator do
not exhibit a ln(t/t) part. Thus, the timet* for the onset of
the description by Eq.~20! has to increase beyond any boun
if e tends to zero. The asymptotic expansion in Sec. III w
based onuf(t)2 f cu being small. This condition is satisfie
for the critical correlator if the time is sufficiently large
sincef(Vc,t) decreases monotonically tof c. Hence, fore
→0 there must appear an increasing time intervalt1,t
,t* where the asymptotic expansion describes the crit
correlator. Thee dependence due to the separation para
etersen(V) and thee dependence due to the time scalet
cancel to produce the critical correlator outside the trans
regime and prior to the onset of the ln(t/t) law. This is shown

s.

i-

re
d

FIG. 3. The heavy full curve with labelc is the solution of Eqs.
~32a! and ~32b! at the A3 singularity, V5Vc, called the critical
correlator. The thin full curves with labelsn51 and 4,e1,0 re-
produce two of the solutions discussed in Fig. 2. The dashed l
reproduce from Fig. 2 the corresponding approximations at next
leading order, Eq.~30!. The dash-dotted curves extend th
asymptotic expansion by including the second-order correctio
Eq. ~31!. The horizontal line marks the critical form factorf c

51/3. The full curve marked withn54,e1.0 refers to a statev1

2v1
c50.9298/44, v32v3

c53.3750/44. The circles mark the times
where the correlatorsn54,e1:0 deviate by 2% from the critica
one.
5-7
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most clearly by the dash-dotted lines in Fig. 3. They exh
the result of the asymptotic expansion up to the second
rection given by Eq.~31!. They describe the complete deca
for t/t1>1 except for the final exponential approach towa
f 5f(t→`); and this is for states as far from the critic
point as given by the one with labeln51 ~cf. Fig. 1!.

Figure 4 exhibits the dynamical susceptibilitie
x(v)512S @f(t)#(v1 i0)5x8(v)2 ix9(v) for the states
discussed above. Without interaction effects, the suscept
ity spectrum shows a Debye peakxD9 5CDvtD /@1
1(vtD)2# with CD51,tD5t1. Such a Lorentzian spectrum
is added to the upper panel as a dotted line with labelD,
whereCD and tD are fitted to the maximum of the critica
susceptibility spectrum. This shows that the spectral pe
nearv51, in particular their high-frequency wings, are d
to the transient dynamics. However, the low-frequency win
of the peaks are enhanced relative to the Debye spectrum
they are stretched to lower frequencies due to the crit
relaxation within the interval 1/t* ,v,1/t1. It is the struc-
tural relaxation near theA3 singularity that causes th

FIG. 4. Susceptibility spectrax9(v) and reactive parts of the
dynamical susceptibilityx8(v) for the one-component model de
fined in Sec. IV. The full lines with labelsn andc correspond to the
correlators with the same labels shown in Figs. 2 and 3. The do
straight lines, the dashed lines, and the dash-dotted lines are
leading approximation Eq.~22!, the leading correction Eq.~30!, and
the second correction Eq.~31!, respectively. The filled, open, an
half-filled symbols mark the frequencies where the correspond
approximation deviates from the spectrum by 5%. The dotted
with label D exhibits a Debye spectrumCD(vtD)/@11(vtD)2#
with CD50.2503 andtD /t150.670 fitted to the maximum of the
critical spectrum. The horizontal lines in the lower panel exhibit
static susceptibilityx8(v→0)512 f for the states with labelsn
52, 3, 4, andc, respectively.
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skewed shape of the spectral peaks. The leading approx
tion Eq. ~22! implies constant-loss plateaus:x9(v)/(12 f c)
5pB/2. However, this formula describes the plateau o
for n>3 and then for a frequency interval that is consid
ably smaller than the time interval for which Eq.~22! de-
scribes the correlators in Fig. 2. The leading corrections
Eq. ~30! are much more important for an adequate desc
tion of the spectra than for the approximation of the corre
tors. The second correction Eq.~31! is necessary to describ
the plateau for then52 state within a 5% error margin. It is
also necessary to describe the crossover of the spectrum
the plateau toward the critical one forn53,4.

To understand the range of validity of Eq.~22! and its
Fourier transform, one has to compare it with Eq.~30! and its
Fourier transform, respectively. This amounts to compar
polynomials in ln(t/t) and ln(i/vt). Let us restrict ourselves
to the dominant terms for the model to grasp the esse
Then one can write „f(t)2 f c

…/(12 f c)52Bln(t/t)@1
2(B4 /B)ln3(t/t)#. Thus, within the error margind, the lead-
ing linear-in-ln(t/t) approximation holds for
u ln(t/t)u<A3 d(B/B4). For the spectrum one gets from
Eq. ~A1! in leading order x9(v)/(12 f c)5B(p/2)@1
24(B4 /B)ln3(1/vt)#. Hence, the spectrum is at the plate
within a deviationd for u ln(1/vt)u<A3 d(B/4B4). As a result,
the range of applicability on a logarithmic axis shrinks by
factor A3 4 if one transforms from the time domain to th
frequency domain.

Because of Eq. ~A1!, S @ lnn(t/t)#(z)5lnn(i/zt)
2ng lnn21(i/zt)1•••. In leading approximation fort→` and
z→0, one findsx8(v)}12f(1/v) wheneverf(t) is a
polynomial in ln(t/t). This explains the lower panel of Fig.
as a different representation of Figs. 2 and 3. In particu
the linear-ln(v) parts in Fig. 4 are of a similar size to th
linear-ln(t/t) parts in Fig. 2.

Let us consider the states labeledn851 –3 and shown by
triangles in Fig. 1 in order to analyze the implications of t
correction term in Eq.~30! proportional toB2. These states
are chosen on the linee1520.0182 and the staten852 is
identical with staten52 considered in Fig. 2 as an examp
for B250. Figure 5 exhibits the correlators together wi
their approximations. ForB2.0, thef(t) versus log(t) dia-
gram is concave for all times outside the transient, sinc
parabola with positive curvature is added to the leading
ear variation described by Eq.~22!. The formula with the
leading correction describes the complete structural re
ation, except for the very last piece for the approach to
long-time limit f, as shown by the curven851. This obser-
vation also holds for cases withB2,0 as is demonstrated fo
the staten853. However, for negativeB2, the f(t) versus
log10(t) curve exhibits two inflection points becausef(t)
crosses the critical form factorf c with negative curvature.
Since thef(t) versus log(t) curve is convex forf(t)' f c, it
has to have an inflection point forf(t), f c in order to ap-
proach the exponential, i.e., concave, long-time asymptot
has to exhibit an inflection point also forf(t). f c in order to
approach the concave critical correlator for short times. T
described alternation of convex and concave parts is ide
cal to the behavior discussed earlier for the MCT correlat
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for states near anA2 bifurcation@22,26#. But, contrary to the
characteristic decay pattern found for the MCT liquid-gla
transition, the curven853 does not show a two-step rela
ation scenario, even though there is a huge stretching of
dynamics. For the decay from 0.80 to 0.05 a dynamical w
dow of five orders of magnitude is required. Within this lar
window, the correlator follows closely the lawf(t)
} ln(t/teff).

The qualitative features described above for the staten8
53 are more pronounced for the staten854, sinceB2 is
decreased to larger negative values. The relaxation curv
has the form expected for states near a liquid-glass transi
To corroborate this statement, further states 5 –7 are con
ered on the linee1520.0182 between the state 4 and t
intersectionV(2)c of this line with the liquid-glass transition
curve. The transition pointV(2)c is characterized by a critica
glass form factorf (2)c. f c. The decay of the correlator from
the value f (2)c to zero is the correspondinga process. Its
initial part is described by von Schweidler’s power law,
indicated in Fig. 5 for the curven857 by the dotted line. In
this case, von Schweidler’s law accounts for the decay fr

FIG. 5. Correlatorsf(t) for the one-component model define
in Sec. IV for states located on the linee1520.0182. The
states with labels n85124 have the coordinate
(v1 ,v3)5(1.1169, 2.7141),(1.0669, 3.1641),(1.0169, 3.6141), and
(0.9669,4.0641), respectively, and they are marked by triangle
Fig. 1. The state labeledn852 is identical with the state discusse
in Figs. 1, 2, 4 with labeln52. The states with labels 5, 6, and
have the coordinates (0.9599, 4.1271),(0.9569, 4.1541), and
(0.9549, 4.1721), respectively. The straight line through the st
127 crosses the liquid-glass transition curve at the stateV(2)c

5(0.954 66, 4.174 07), where the critical glass form factor has
value f (2)c50.520. The exponent parameter for theA2 glass-
transition singularity isl50.719, implying a critical exponenta
50.318 and a von Schweidler exponentb50.608. The critical de-
cay law f(t)2 f (2)c}t2a and von Schweidler’s lawf(t)2 f (2)c}
2tb are shown by dotted lines labeleda and b, respectively; the
constants of proportionality are fitted to curve 7. The dash-do
curve extends the von Schweidler expansion for curve 7 tof(t)

5 f (2)c2(t/ t̃)b11.48(t/ t̃)2b. The horizontal lines mark the critica
glass form factorsf (2)c and f c, respectively. The dotted straigh
lines and the dashed curves are the leading asymptotic laws Eq~22!
and the leading correction Eq.~30!, respectively.
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f (2)c to about 0.45, i.e., for about 15% of thea relaxation.
The analytical description of thea process can be expande
by using the extension of von Schweidler’s law,f(t)
2 f (2)c}2(t/ t̃)b1B̃(t/ t̃)2b @26#, as shown by the dash
dotted line. Asymptotically, thea process obeys the supe
position principle:f(t)5f̃(t/ta), where f̃ is the control-
parameter-independent shape function. Thef(t) versus
log(t) curves for thea process can be superimposed by re
caling the time, i.e., by shifts parallel to the log(t) axis. The
reader can check that the curvesn85427 have the same
shape forf(t), f (2)c. Outside the transient forf(t). f (2)c,
the correlator follows the critical decay law for the fold b
furcationf(t)2 f (2)c}1/ta, as is also demonstrated for curv
7. The results for states 4 –7 exemplify the well understo
scenario for the evolution of structural relaxation near
liquid-glass transition. The formula~30! provides an accurate
description of 60% of thea process.

Comparison of the results for statesn85123 with the
second-correction formula based on Eq.~31! yields the same
conclusions as discussed above in connection with Fig
The second-correction formula does not alter seriously th
quality for the long-time part of the curvesn85426 in Fig.
5. However, forf(t)' f (2)c, the extended formula yields
slightly worse results than Eq.~30!. This is so because fo
f(t)* f (2)c the dynamics is governed by theA2 singularity
V(2)c, whose existence is ignored in the expansions near
higher-order singularityVc. The numberf (2)c2 f c marks the
limit where the expansion in the small parameterf(t)2 f c

makes sense. The opposite conclusion holds for the des
tion of the a process forf(t)' f c. von Schweidler’s law
results from an expansion for statesV nearV(2)c in terms of
the small parameterf (2)c2f(t). This number becomes to
large if f(t)' f c. It is the dynamics dominated by th
higher-order glass-transition singularityVc that ruins the rel-
evance of the expansion resulting in the von Schweidler l
The stretching of thea process connected with the transitio
of V(2)c is larger than estimated by von Schweidler’s la
because of the logarithmic decay effects.

Figure 6 exhibits the susceptibility spectra calculat
from the correlators discussed in Fig. 5. The results for
statesn851,2, and 3 exhibit the evolution of ana peak if
the states cross the lineB250 in the phase diagram of Fig. 1
The leading-correction formula Eq.~30! describes this sce
nario qualitatively. The spectra for statesn854,5, and 6 ex-
hibit the superposition principle for thea peak of the sus-
ceptibility spectra. TheA3 dynamics causes a high-frequen
wing of thea peak closely following a linear variation with
the logarithm of the frequency:x9(v)}2 ln(vt). This phe-
nomenon is described well by Eq.~30! and it causes a stron
a-process stretching. Thea-peak width at half of thea-peak
height is about 2.5 decades. von Schweidler’s asymptotic
is irrelevant for the description of thea peak for statesn8
5426.

V. RELAXATION FORMULAS FOR STATES NEAR
HIGHER-ORDER GLASS-TRANSITION SINGULARITIES

In this section, the generalizations of Eqs.~22! and ~30!
will be derived for the asymptotic expansion of the solutio
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dealing with an arbitrary numberM of correlators. In particu-
lar, the general formulas form2 , m3, andz and for the sepa-
ration parameterse1(V) and e2(V) will be obtained. The
starting formulas are Eqs.~10a! and ~10b!. The subtlety of
the problem is the treatment of the singularM3M matrix
@dqk2Aqk

(1)c#.

A. Asymptotic expansion of the equations of motion

The left and right eigenvectors of the matrixAqk
(1)c for the

maximum eigenvalueEc51 will be denoted byak* and
ak ,k51, . . . ,M , respectively. According to the Frobeniu
theorems@23#, one can requireak* >0 andak>0. It will be
convenient to fix the eigenvectors uniquely by the conditio
(qaq* aq51 and(qaq* aq

251. The solubility condition of Eq.
~10a! reads

(
q

aq* Jq~z!50, ~35a!

and its general solution can be written as

f̂q~ t !5aqf̂~ t !1f̃q~ t !. ~35b!

The splitting of f̂q(t) into two terms is unique if one im
poses the condition(qaq* f̂q(t)5f̂(t). The partf̃q(t) can
be expressed by means of the reduced resolventRqk of Aqk

(1)c :

S @f̃q~ t !#~z!5RqkJk~z!. ~35c!

It is an elementary task to evaluate from matrixAqk
(1)c the

vectorsak* ,ak and the matrixRqk @23#.

Equations~10b! and~35! suggest an expansion off̂(t) as
Eq. ~17! and

FIG. 6. Susceptibility spectrax9(v) for the correlators in Fig. 5
for the labelsn85126. The dashed lines are obtained from t
leading-correction formula Eq.~30!. The dotted line with labela is
the critical spectrum proportional tova and the dotted line with
label b is the von Schweidler lawx9(v)}v2b for the staten856.
The dotted horizontal line corresponds to the spectrum of the le
ing approximation Eqs.~20!, ~22!, x9(v)5(12 f c)A26e1, which
is shared by all statesn85126.
01140
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f̃q~ t !5Gq
(2)~ t !1Gq

(3)~ t !1•••,

Gq
(n)~ t !5O~ ueun/2!, ~36a!

Jq~ t !5Jq
(2)~ t !1Jq

(3)~ t !1•••,

Jq
(n)~ t !5O~ ueun/2!. ~36b!

Here, for example,

Jq
(2)~z!5Âq

(0)~V!1Aqk1k2

(2)c ak1
ak2

S @G(1)2~ t !#~z!

2aq
2S @G(1)~ t !#2~z!, ~37a!

Jq
(3)~z!52$Aqk1k2

(2)c ak1
ak2

S @G(1)~ t !G(2)~ t !#~z!

2aq
2S @G(1)~ t !#~z!S @G(2)~ t !#~z!%

1Âqk
(1)~V!akS @G(1)~ t !#~z!

12$Aqk1k2

(2)c ak1
S @G(1)~ t !Gk2

(2)~ t !#~z!

2aqS @G(1)~ t !#~z!S @Gq
(2)~ t !#~z!%

1Aqk1k2k3

(3)c ak1
ak2

ak3
S @G(1)3~ t !#~z!

2aq
3S @G(1)~ t !#3~z!. ~37b!

The justification of the preceding expansions will be giv
by demonstrating how the equations can be solved re
sively.

B. The leading-order contribution

The leading-order contribution to the solubility conditio
is obtained by substituting Eq.~37a! into Eq. ~35a!. One
arrives at e1(V)1lS @G(1)2(t)#(z)2S @G(1)(t)#2(z)50.
Here l5(qaq* Aqk1k2

(2)c ak1
ak2

is the expression for the expo

nent parameter@22,26# and

e1~V!5(
q

aq* Âq
(0)~V!. ~38!

The z50 limit leads toe1(V)1(l21) f̂ (1) 250. Compari-
son with Eq.~15! yields the conclusion that

m2512(
q

aq* Aqk1k2

(2)c ak1
ak2

. ~39!

This parameter has to be zero according to Eq.~18! in order
for Vc to be a higher-order singularity. Form250, l51, and
the equation found forG(1)(t) is identical with Eq.~19!.
Thus, e1(V) is the first separation parameter and Eqs.~20!
and ~21! remain valid.

Introducing the critical amplitudehq by the same formula
as in the theory for theA2-singularity @22,26#

hq5~12 f q
c!aq , ~40!

the leading approximation for the correlators is

d-
5-10
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LOGARITHMIC RELAXATION IN GLASS-FORMING SYSTEMS PHYSICAL REVIEW E66, 011405 ~2002!
fq~ t !5 f q
c1hq@2B ln~ t/t!#. ~41!

Here,B5A26e1(V)/p5O(ueu1/2). Equation~41! describes
the dynamics up to errors of ordere; it is the generalization
of the logarithmic decay law@6# to arbitrary MCT models.

Equation ~41! is the factorization theorem of MCT. In
leading order,fq(t)2 f q

c factorizes into two terms. The fac
tor hq is time and control-parameter independent and it ch
acterizes the specific correlator via itsq dependence. The
other factor is the functionG(1)(t)52B ln(t/t). This factor
is shared by all correlators. It describes the control-param
dependence viaB and t and the complete time dependen
via ln(t). Within the range of validity of Eq.~41!, the rescaled
correlatorsf̂q(1)5@fq(t)2 f q

c#/hq are the same for allq.
Let us emphasize that Eq.~41! is an exact limit result for the
solutions of Eqs.~1! and ~2!:

lim
e→0

@fq~ t̃ t!2 f q
c#/A2e1~V!52A6/p2hqln~ t̃ !. ~42!

The interval of rescaled timest̃ 5t/t, where @fq(t)
2 f q

c#/A2e1(V) becomes close to the right-hand side~RHS!
of Eq. ~42!, expands beyond any bound ifV approachesVc

arbitrarily close. It will be shown below, how the leadin
corrections forfq(t) describe violations of the factorizatio
theorem.

Substitution of Eq.~37a! into Eq.~35c! yields the leading-
order contribution tof̃q(t), i.e., the functionGq

(2)(t) in Eq.
~36a!. Equation~19! is used to expressS @G(1)(t)#2(z) in
terms ofS @G(1)2(t)#(z) so that

Gq
(2)~ t !5XqG(1)2~ t !1Ŷq~V!. ~43a!

The amplitudeXq is independent ofe,

Xq5Rqk@Akk1k2

(2)c ak1
ak2

2ak
2#. ~43b!

Ŷq(V)5O(e) and reads

Ŷq~V!5Rqk@Âk
(0)~V!2e1~V!ak

2#. ~43c!

C. The leading correction

If one substitutes Eq.~43a! into Eq. ~37b!, one gets an
expression forJq

(3)(z) in terms of the knownG(1)(t) and the
unknown G(2)(t). Therefore, the solubility condition Eq
~35a! evaluated up to ordere3/2 yields an equation for
G(2)(t). The latter has the form of Eq.~23!, where also the
inhomogeneity is given by Eq.~25!. This holds with the for-
mula

e2~V!5(
q

aq* Âqk
(1)~V!ak12e1~V!(

q
aq* aqXq

12(
q

aq* @Aqk1k2

(2)c ak1
Ŷk2

~V!2aqŶq~V!# ~44!

for the second separation parameter, and the constants
01140
r-

er

z5(
q

aq* @aqXq1aq
3/2#, ~45!

m352z2(
q

aq* @Aqk1k2k3

(3)c ak1
ak2

ak3
12Aqk1k2

(2)c ak1
Xk2

#.

~46!

As a result, Eqs.~29! for the functionG(2)(t) remain valid.
Combining the results forG(1)(t),G(2)(t), and Gq

(2)(t)
with Eq. ~36a!, and this with Eq.~8!, one obtains the main
result of this paper. It describes the correlators up to error
order ueu3/2:

fq~ t !5~ f q
c1 f̂ q!1hq@~2B1B1!ln~ t/t!1~B21KqB2!

3 ln2~ t/t!1B3ln3~ t/t!1B4ln4~ t/t!#. ~47!

Here

f̂ q5~12 f q
c!Ŷq ~48!

is a renormalization of the glass form factor of ordere to be
calculated from Eq.~43c!. The critical amplitudehq is de-
fined by Eq.~40!. The parameterB1 from Eq. ~29b! is a
renormalization of ordere of the prefactor of the logarithmic
decay law. The three terms proportional toB2 ,B3, andB4,
respectively, describe leading deviations from the logar
mic decay. They are of ordere and follow from Eqs.~29c!
and ~29d!. The relative size of these deviations is the sa
for all correlators. This means that these terms imply a mo
fication of the factorization theoremfq(t)2( f q

c1 f̂ q)
5hqG(t), in the sense thatG(t)52Bln(t/t) in Eq. ~41! is to
be generalized by the factor in square brackets on the RH
Eq. ~30!. It is solely the contribution proportional toB25
26e1 /p25O(e) that describes a violation of the factoriza
tion theorem. It enters with the correction amplitude

Kq5Xq /aq . ~49!

Its q dependence expresses the fact that the size of the l
ing corrections depends on the chosen correlator. Thus,
range of validity of the universal Eq.~41! is not universal.
The correction amplitude is to be calculated from Eq.~43b!.
The formula forKq is the same as discussed in the theory
the A2 singularity @26#.

VI. RESULTS FOR A TWO-COMPONENT MODEL

The simplest example exhibiting a generic swallowtail
furcation is given by anM52 model with the mode-
coupling functionals F 1@V, f̃ k#5v1 f̃ 1

21v2 f̃ 2
2 ,F 2@V, f̃ k#

5v3 f̃ 1 f̃ 2. This model was motivated originally as a trunc
tion of the microscopic equations of motion for a symmet
molten salt@27#. The model will be used here in order t
demonstrate implications of our theory that could not
demonstrated for theM51 model studied in Sec. IV. Using
Brownian microscopic dynamics, the equations of moti
~1b! and ~2! read forfq(t),q51,2:
5-11
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W. GÖTZE AND M. SPERL PHYSICAL REVIEW E66, 011405 ~2002!
tq] tfq~ t !1fq~ t !1E
0

t

mq~ t2t8!] t8fq~ t8!dt850,

~50a!

m1~ t !5v1f1
2~ t !1v2f2

2~ t !, ~50b!

m2~ t !5v3f1~ t !f2~ t !. ~50c!

The three coupling constantsvn>0 will be considered as the
components of the control-parameter vectorV5(v1 ,v2 ,v3).

Let us note convenient equations for the discussion of
phase diagram@6,22#, restricting ourselves tov3.4. Equa-
tion ~7! for the second form factor impliesf 25@v3f 1
21#/(v3f 1), and this result can be used to eliminatef 2 in
the following expressions. Thus, Eq.~7! for the first form
factor f 1 /(12 f 1)5v1f 1

21v2f 2
2 is a linear equation for

(v1 ,v2) with coefficients that are nonlinear inf 1 andv3. The
same statement holds for Eq.~12! for a singularity
that is equivalent to f 1

(2)c/(12 f 1
(2)c)252v1

(2)cf 1
(2)c2

12v2
(2)c2f 2

(2)c(12 f 2
(2)c). These equations can be used to e

pressv1
(2)c andv2

(2)c in terms ofv3
(2)c and f 1

(2)c . To ease the
notation, variablesx andy will be introduced as

v3
(2)c5x, f 1

(2)c5y. ~51a!

One gets

v1
(2)c5

32~21x!y

2~12y!2y~22xy!
, ~51b!

v2
(2)c5

x2y~y222y3!

2~12y!2~x2y223xy12!
. ~51c!

These equations define the surface of bifurcation singu
ties of Eq.~7! in the three-dimensional parameter space. T
variablesx andy with 4,x and 1/2<y<3/(21x) serve as
surface parameters. The exponent parameterl512m2 is
determined by

m25
~3x216x!y32~x2118x18!y21~6x118!y26

~2x214x!y3212xy21~2x14!y
.

~51d!

The maximum theorem, mentioned above in connection w
Eq. ~7!, has to be used to identify among the poin
(v1

(2)c ,v2
(2)c ,v3

(2)c) those that are glass-transition singula
ties.

Figure 7 exhibits three cuts through the parameter sp
The cutv3520 is typical for sufficiently small values ofx.
The cut through the bifurcation surface yields a smo
curve of A2 glass-transition singularities. The bifurcatio
surface for suchv3

(2)c deals solely with the generic scenar
for liquid-glass transitions.

The cut shown forv3545 is representative for sufficientl
large values ofx. In this case, the cubic numerator polyn
mial in Eq. ~51d! has two zerosy1(x),y2(x) above some
y0; they can be evaluated elementarily@28#. The transition
line consists of several pieces. The first one, obtained
01140
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1/2>y.y2(x), is shown in Fig. 7 as a heavy full line. I
starts atv1

(2)c54, v2
(2)c50 and ends at theA3 singularity

marked by a circle. The second piece describes bifurcat
with m2,0 for y2(x).y.y1(x). It connects the mentioned
A3 singularity with a secondA3 singularity of Eq.~7! that is
shown as a shaded circle. This piece of the line is sho
dotted. Decreasingy further, one gets a curve withm2.0
that joins the secondA3 singularity with the pointv1

(2)c

50, v2
(2)c53/(21x). This line exhibits a crossing point with

the first line piece mentioned above, which is shown a
diamond. The part between the secondA3 singularity and the
crossing point is shown dotted, and the final piece is sho
as a light full line. The dotted bifurcation lines and the se
ond A3 singularity are excluded from the set of glas
transition singularities because of the maximum theore
These items have been added to the figure merely in orde
allow the reader to recognize the familiar swallowtail sc
nario @2#. The crossing point organizes three lines of fo
singularities. Between theA3 singularity and the crossing
point, there is a line of glass-glass transitions. The contin
tion of the line to the boundary of the admissible parame
rangev250 deals with liquid-glass transitions. The third lin
between the crossing point and the parameter boundar
v150 also deals with liquid-glass transitions. Both lines a
characterized by a discontinuous increase of the correla
long-time limits from zero to the positive critical glass for
factors f q

(2)c.0.

FIG. 7. Phase diagram for the two-component model define
Sec. VI. The full lines are cuts through the bifurcation surface
v3520, v35v3* , and v3545, respectively. The valuev3*
524.7 . . . denotes a coordinate of theA4 singularity indicated by a
star. Forv3.v3* , there occurA3 glass-transition singularities a
indicated forv3545 by an open circle. The transition lines exhib
a crossing point shown as an open diamond. The dotted lines
join at the cusp singularity marked by a shaded circle complete
bifurcation diagram of Eq.~7!, but they have no relevance for th
discussion of the MCT solutions~see text!. The dashed line denote
the v3545 cut through the surface of vanishing first separat
parametere1. The dash-dotted lines are the cutsv3545 through
surfaces of the vanishing leading correction termB2(q)5B2

1KqB2 in Eq. ~47!, q51,2. The crosses labeledn51,2, . . . and
triangles labeledn851,2,3 mark states whose dynamics is d
cussed in Figs. 8 and 9,10, respectively.
5-12
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LOGARITHMIC RELAXATION IN GLASS-FORMING SYSTEMS PHYSICAL REVIEW E66, 011405 ~2002!
Decreasingx from large values to smaller ones, the tw
cusp valuesy1(x) and y2(x) approach each other. The co
responding parameter vectorsVc5„v1

c(x),v2
c(x),v3

c(x)…
form curves that approach each other with decreasingx and
join at a certain valuex* : y1(x* )5y2(x* )5y* . The pair
(x* ,y* ) defines theA4 singularity for the model. The param
eters for this singularity are obtained if the derivative of t
numerator polynomial in Eq.~51d! is zero form250. This
leads to (x* 22)(x* 24)(x* 4230x* 31136x* 22168x*
188)50. The elementary solution for the zeros of t
quartic polynomial @28# determines the coordinate
of the swallowtail singularity x* 524.779 392 . . . ,y*
50.242 663 25 . . . . The cutthrough the transition surfac
for v35x* is shown in Fig. 7 as a pair of light full lines
joining at theA4 singularity which is indicated by a star.

Figure 8 demonstrates the validity of the factorizati
theorem for states close enough to a cusp singularityVc and
its violation for states sufficiently away from it. For theA3

singularity withv3
c545, the correction amplitudes calculate

from Eq. ~49! are quite different for the two correlators:K1

50.068 57,K2522.049. Therefore, the lines for vanishin
dominant correction, i.e., the cut of the surfacesB2(q)5B2

1KqB250,q51,2, with the planev3545, are quite differ-
ent as well, as shown by the dash-dotted lines in Fig. 7.
four states discussed in Fig. 8 are chosen on the sur
B2(1)50. Thus, the scenario for the evolution of the ln(t/t)
law shown forf1(t) is in qualitative agreement with the on
discussed in Fig. 2. The states with labelsn53 and 4 are so
close to the singularity, that the correction term in Eq.~47!
proportional toB2(2)5O(e) is not important. As a result
the rescaled functions@fq(t)2 f q

c#/hq , q51 and 2, agree
for the statesn53 and 4, and the same holds for the cor
sponding approximations. However, for the states with lab
n51 and 2, the negative coefficientB2(2) is so large that
the f2(t) versus log10(t) curve does not exhibit the straigh
line obtained forf1(t) versus log(t) diagram. Rather, the
correlatorf2(t) exhibits changes of curvature and inflectio
points as explained above in Fig. 5 for the staten853.

Figure 8 also exemplifies a problem concerning the cho
of the time scalet. The complete solution of Eqs.~2! and~4!
is unique up to the choice of a control-parameter independ
time scale. The nonlinear coupling of the correlators of d
ferent indexq requires scale universality. However, if a tim
scale like t is deduced from some approximation to t
equation of motion, the error of the approximation will res
in violations of the scale universality for the approxima
solutions. In constructing the approximate solutions in F
8—and also in the upper panel of Fig. 9—the timet was
fixed for the leading approximation fromf1(t)5 f 1

c and for

the leading correction fromf1(t)5 f 1
c1 f̂ 1. The errors ex-

plained lead to offsets for the second correlator:f2(t)Þ f 2
c

andf2(t)Þ f 2
c1 f̂ 2, respectively, for the two approximation

studied. This explains, e.g., why the dashed line forf2(t) for
the staten51 does not coincide with the full one. One cou
also chooset differently, e.g., by requestingf2(t)5 f 2

c1 f̂ 2

as was done in the lower panel of Fig. 9.
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The transition line which is shown in Fig. 7 by the ligh
full and almost horizontal curve for the cutv3545 intersects
the line B2(1)50 at some glass-transition singularityV(2)c

5(2.94 . . .,0.130 . . . ,45.0). For states on the lineB2(1)
50 that are close enough to this singularity, one gets
standard liquid-glass transition scenario, i.e., the evolution
a plateau of thefq(t) versus log(t) diagram at the critical
glass form factorf q

(2)c and ana process for the decay below
this plateau. The universal bifurcation results for anA4 sin-
gularity require that the plateau values are below the crit
form factors of the nearbyA3 singularity: f q

(2)c, f q
c . For the

example under discussion, one getsf 1
(2)c50.0747,f 2

(2)c

50.7027 andf 1
c50.3125,f 1

c50.9289. The precursor of th
liquid-glass transition atV(2)c explains the stretched tail ex
hibited in Fig. 8 for the decay off1(t) below 0.1 for the
staten51.

To corroborate the discussion of the preceding paragra
the correlators with labeln51 are reproduced as curves wi
label n851 in Fig. 9. Two further curves with labelsn852
and 3 are added. They refer to states between state 1 an

FIG. 8. Correlatorsf1,2(t) for the two-component model de
fined in Sec. VI. The states labeledn51, . . . ,4 arelocated on the
cut v3545 through the surface of vanishing dominant correction
the first correlator,B2(1)5B21K1B250. The coupling constants
are v1

c2v152/4n,v2
c2v250.149 07/4n and the states forn51,2,

and 3 are shown in Fig. 7 by crosses. The full lines are the solu
of Eqs. ~50a!–~50c!. The dotted straight lines show the leadin
approximation Eq.~41! and the dashed ones the leading correct
Eq. ~47!. The long horizontal lines show the critical glass for
factors f 1

c50.312 507,f 2
c50.928 89 and the short horizontal line

shown for the statesn51,2 denote the renormalized form facto

f 1,2
c 1 f̂ 1,2 according to Eq.~48!. Here and in the following figures

the model is used witht15t251.
5-13
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W. GÖTZE AND M. SPERL PHYSICAL REVIEW E66, 011405 ~2002!
transition pointV(2)c as denoted in Fig. 7 by triangles. Th
diagrams forf1(t) for states 2 and 3 exhibit the two-ste
relaxation scenario characteristic for anA2 bifurcation. The
decay forfq(t), f q

(2)c demonstrates the superposition pri
ciple for thea process, and its initial part can be describ
by von Schweidler’s power law. The decay toward the p
teaus f q

(2)c for t.1000 follows the critical law for theA2

singularityV(2)c. The universal laws for the dynamics near
fold bifurcation imply that the correlators follow the asym
tote of the critical law@fq(t)2 f q

(2)c#/hq5(t/t0)2a for short
times down to about one decade above the end of the t
sient dynamics, i.e., until aboutt510. In particular, for small
times, the correlator for staten852 should approach the on
for staten853. However, these features are not exhibited

FIG. 9. Correlators for the two-component model defined
Sec. VI. The states with labelsn851,2, and 3 are located on th
line defined byv3545,B2(1)50 and have coordinates (v1 ,v2)
5(2.7799, 0.1183),(2.9254, 0.1292), and (2.9391, 0.1302), resp
tively. They are indicated in Fig. 7 by triangles and approach
liquid-glass transition point V(2)c with coordinates v1

(2)c

52.941 029,v2
(2)c50.130 326. The staten851 is identical to state

n51 discussed in Fig. 8. The horizontal lines show the criti
glass form factorsf q

c and f q
(2)c ,q51,2, for the cusp singularityVc

and the fold singularityV(2)c, respectively. The liquid-glass trans
tion point is connected with an exponent parameterl50.603, lead-
ing to the exponentsa50.363 andb50.807. The critical decay
laws@fq(t)2 f q

(2)c#5hq
(2)c(t0 /t)a are shown as dotted lines labele

a. The von Schweidler laws@fq(t)2 f q
(2)c#/hq

(2)c}2tb with a time
scale fitted for the curven853 are shown as dotted lines with th
label b. The straight dotted line in the upper panel exhibits t
leading asymptotic law Eq.~41! for f1(t) and the staten853; the
dashed line shows the result of Eq.~47!. The dashed lines in the
lower panel exhibit the leading-correction formulas Eq.~47! for
f2(t) and statesn851 and 3, respectively.
01140
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Fig. 9. Rather, thet2a law becomes irrelevant for the de
scription of the dynamics below times around 103, where the
A2 critical curve crosses the curves describing the logar
mic laws for theA3 singularity. As a result, there appears
window between the end of the transient and the beginn
of the description by theA2 singularity results where the
correlators are described by Eq.~47!. This window deals
with an increase in time over about two orders of magnitu
In this window, the logarithmic decay processes destroy
manifestation of thet2a law.

The lower panel of Fig. 9 demonstrates a further implic
tion of Vc dynamics on the precursors of the liquid-gla
transition dynamics. Even though the time scale for thea
process for the statesn851 or 2 exceeds the one for th
transient by factors 104 and 106, respectively, the correlato
f2(t) does not exhibit the two-step scenario for these sta
Rather, there is a large time interval where the appro
toward the plateauf 2

(2)c follows closely the law@f2(t)
2 f 2

(2)c#} ln(t/teff). This is due to cancellation of two effects
The asymptotes for theVc dynamics and for theV(2)c dy-
namics yield a positive curvature, while the onset of thea
process causes a negative one. The resulting nearly lin
log(t) variation must not be mistaken as the true asympto
logarithmic law given by Eq.~41!.

The destruction of the critical decay law of the liquid
glass transition dynamics by the presence of a higher-o
glass-transition singularity nearby alters the familiar patt
of the susceptibility spectra, as shown in Fig. 10. The Deb
peak for the transient dynamics deals with the spectra
v.0.1, as shown by the peak aroundv'1 for x19(v). This
peak is strongly suppressed and shifted to higher frequen
for x29(v). There is the large frequency regime24
< log10v<21, where theva law is irrelevant for the de-
scription of the structural relaxation spectrum. Rather,
critical relaxation spectrum of the cusp singularity leads t
high spectral enhancement ofx19(v) relative to theva spec-
trum; it leads to a second structural relaxation peak neav
'0.01 in addition to the low-frequencya peak. It was dis-
cussed in connection with the statesn853 and 4 in Figs. 5
and 6, that the winding of thef(t) versus log(t) curve
around an effective ln(t) law for states withB2,0 is a pre-
cursor phenomenon of a nearbyA2 transition singularity. In-
deed, the spectrumx29(v) exhibits thea peak of the men-
tioned transition with a maximum for log10v'23. Thus,
because ofB2(2),0, the susceptibility for the second co
relator exhibits twoa peaks, referring to the two parts of th
liquid-glass transition lines discussed in Fig. 7. The lo
frequencya peaks shift strongly with changes ofn851,2,
and 3, since the states are shifted toward the transition
gularity V(2)c on one of the lines. The high-frequencya peak
does not change significantly since the distance of the st
from the other transition line is almost unaltered. As e
plained in connection with Fig. 6, the leading correction fo
mula Eq.~47! describes the high-frequency wing of the se
ond a peak.

VII. CONCLUSIONS

Describing the states of a system by a vectorV of control
parameters, the neighborhood of a glass transition singula
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e
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Vc was characterized by a sequence of separation param
e1(V),e2(V), . . . .These are smooth functions ofV that van-
ish at Vc, and they are considered as small of ordere. The
glass-transition singularitiesVc are the bifurcation points o
the glass form factorsf q(V)5fq(t→`), i.e., of the long-
time limits of the correlatorsfq(t). These bifurcations are o
the cuspoid familyAl ,l 52,3 . . . . Thee1 , . . . ,e l 21 are the
relevant small coefficients specifying the polynomial of d
greel whose largest zero determinesf q(V) for small e. The
major result is the proof that the solution of the MCT equ
tions can be asymptotically expanded in polynomialsP(x)
of the logarithm of time,x5 ln(t/t), for states close to an
Al ,l>3, and e1(V),0. The leading term of orderueu1/2

yields the ln(t/t) law Eq.~41!. The prefactor for this polyno-
mial of degree 1 is given solely by the first separation
rametere1(V). The leading correction adds a polynomial
degree 4. The coefficients are of orderueu, and they are de-
termined bye1(V) ande2(V), Eqs.~29! and ~47!. The sec-
ond correction adds a polynomial of order 7; the coefficie
are of orderueu3/2 and determined bye1(V),e2(V),e3(V),
and so on. Several relaxation scenarios have been iden
that are utterly different from the MCT scenario for th
liquid-glass transition. The latter is described by anA2 sin-
gularity.

There are distinct surfaces in parameter space, where
prefactor of thex2 monomial in the polynomialP(x) van-
ishes. For this case, the ln(t/t) law dominates the dynamic
for such times wherefq(t)' f q(Vc). This law may describe
the complete decay except for the transient and for the fi
exponential approach offq(t) toward its long-time limit,
Fig. 2. States near the mentioned surface exhibit slight
formations of the straightf(t) versus log10(t) curve. There
is a concave behavior on one side of the surface and a w

FIG. 10. Susceptibility spectra for the correlators shown
Fig. 9.
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ing around the straight line with alternating convex and co
cave parts on the other side, as shown for the statesn851
23 in Fig. 5. The corrections to the leading-ord
asymptotic results depend on the correlator under consi
ation. The surfaces of dominant ln(t/t) behavior are different
for different correlation functions, as explained in connecti
with Fig. 8.

Every higher-order glass-transition singularityVc is an
end point of a surface of fold-bifurcation pointsV(2)c with
f q(Vc)5 f q

c, f q
(2)c5 f q(V(2)c). For states sufficiently close to

V(2)c, one finds the standard transition scenario with tw
step relaxation described by the interplay ofa- and
b-scaling laws. The correlators forfq(t)' f q

c are a part of
the a process. Therefore, the logarithmic decay laws as
mulated by Eq.~47! describe thea-relaxation master func-
tions. They reduce the range of validity of von Schweidle
power law and cause anomalies of thea-relaxation shape
functions as shown for the statesn85426 in Figs. 5 and 6.

Generically, near a higher-order singularityVc, there is a
further surface of fold bifurcations that crosses the transit
surface discussed in the preceding paragraph, Fig. 7. A
result, there is the scenario for transition singularities of ty
A2, but now with critical form factors smaller than the on
at Vc: f q

(2)c, f q
c . Consequently, the logarithmic decay law

are a part of the relaxation toward the plateauf q
(2)c . They

reduce the range of applicability of the critical decay a
introduce a large crossover interval for structural relaxat
between the end of the transient and the beginning of
transition dynamics caused byV(2)c, as is demonstrated in
Figs. 9 and 10 for the correlatorf1(t). In particular, there
can be a crossover from the transient to a simple ln(t/t) law
followed by a crossover to a von Schweidler power law. T
scenario was demonstrated by the experiments reporte
Ref. @16# and by numerical solutions of MCT equations f
the square-well liquid in Ref.@19#. There can also be a sus
ceptibility spectrum for structural relaxation consisting
two peaks, as shown forx29(v) in Fig. 10.

The asymptotic expansion also describes the critical c
relator of the higher-order glass-transition singularity outs
the transient, Fig. 3. These correlators deal with the de
toward f q

c for control parameters at the singularity. For sta
with e1.0, fq(t) follows the critical decay until close to its
intersection with the long-time asymptotefq(t→`)5 f q

. f q
c . Here it crosses over rapidly to the glass form factorf q .

Summarizing, the formulas of this paper provide a quali
tive understanding of the decay of the correlations provid
the stateV of the system is close to a higher-order glas
transition singularity and the correlatorfq(t) is close to the
glass form factorf q

c at this singularity.
Let Lt denote the length of the log(t) interval where an

approximation by one of the polynomialsP„ln(t/t)… de-
scribes the solution for the correlatorfq(t). Let Lv denote
the length of the log(v) interval where the Fourier cosin
transform ofP„ln(t/t)… leads to a description of comparab
accuracy for the susceptibility spectrumxq9(v). It was ex-
plained in connection with Fig. 4 thatLv is considerably
smaller thanLt . This phenomenon for glassy dynamics w
discussed earlier for the liquid-glass transition@26#, but it is
5-15
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more pronounced for the higher-order singularities. This f
ture of stretched relaxation is the reason why it is more
ficult to test asymptotic MCT formulas with data for spec
than it is with data for correlators in the time domain.

If there is a higher-order glass-transition singularity in
disordered system, there is no generic path for the evolu
of the structural relaxation. Only a parameter surface can
generic for the description of the dynamics near a cusp
gularity. One has to vary two independent parameters
identify anA3 singularity, three parameters to identify anA4
bifurcation, and so on. We hope that the demonstration o
basic scenarios for the dynamics near anA3 singularity will
be of use to identify such singularities in colloids, if there a
any. In this case, the derived formulas are elementary eno
for data fitting. Such fitting might lead to a judgment on t
relevance of the subtle implications of mode-coupling the
for the discussion of glass-forming systems.
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APPENDIX: LAPLACE TRANSFORMS OF LOGARITHMS

The modification of the Laplace transform, introduced
Eq. ~5!, will be used to map invertibly functionsF(t) of time
to functions of the complex frequencyz. The functions are
defined for t.0 and Imz.0, respectively. Euler’s secon
integral for the gamma functionG(y) implies S @ tx#(z)
5( i /z)xG(11x) if x.21. Differentiating this identityn
times forx50,n50,1,2. . . , onearrives at the formula

S @ lnn~ t !#~z!5(
k

S n

kDGkln
n2k~ i /z!. ~A1!

Here (k
n)5n!/ @k!(n2k)! # and Gk5dkG(x51)/dxk. One

gets in particularG051 and G152g, whereg is Euler’s
constant. Ifc(y) denotes the digamma function, one c
write G8(y)5G(y)c(y). Iterating this formula, one can ex
pressGk in terms of the first (k21) derivatives ofc(y) for
y51. The latter are given by the tabulated values of the z
function z(k) @28#; for example,G22G1

25z(2)5p2/6. Im-
plications of Eq.~A1! read withn>1,n1>1,n2>1

S @ lnn~ t !#~z!2S @ ln~ t !#n~z!5
p2

12
n~n21!lnn22S i

zD
1(

k53

n S n

kD @Gk2G1
k# lnn2kS i

zD ,

~A2!
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S @ lnn11n2~ t !#~z!2S @ lnn1~ t !#~z!S @ lnn2~ t !#~z!

5~p2/6!n1n2lnn11n222~ i /z!1 (
k53

n11n2 F S n11n2

k DGk

2(
l

S n1

k2 l D S n2

l DGk2 lG l G lnn11n22k~ i /z!. ~A3!

These formulas are needed for the evaluation of the func
f (2)(z) in Eq. ~25!.

Specializing Eq.~A3! to n15n andn251 and using the
definition of the linear operatorT from Eq. ~24!, one gets

T @ lnn~ t !#~z!5~p2/6!Fnlnn21~ i /z!1 (
k52

n

~n2k11!

3Gn,kln
(n2k)~ i /z!G , ~A4!

where the coefficients are

Gn,k5S n

kD @Gk112GkG1#/@~p2/6!~n2k11!#. ~A5!

Let us construct polynomialspn(x) of degreen51,2, . . .
obeying Eqs.~26!. Specializing Eq.~A4! to n51 shows that
one can choosep1(x)5x. Assuming that the polynomials fo
degreel ,n are known, Eq.~A4! provides the formula for
degreen

pn~x!5xn2 (
k52

n

Gn,kpn112k~x!. ~A6!

Thus, the sequence ofpn(x) can be constructed recursive
in terms of the coefficientsGn,k . To derive Eqs.~29b!–~29d!,
one needs

p2~x!52.6160x1x2, ~A7a!

p3~x!522.1482x13.9239x21x3, ~A7b!

p4~x!5212.813x24.2964x215.2319x31x4. ~A7c!
5-16
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